m, 1 H; 6.61, t, J = 4 Hz, 1 H. Ir (CCl₄) 3070, 2920, 1670, 1630, 910 cm⁻¹

Registry No.—I, 579-75-9; II (R = CH₂CH=CH₂, 38019-50-0; II (R = Pr), 59034-18-3; II (R = Pr) 2,4-DNPH, 59034-20-7; II (R = Pr-i), 59034-19-4; II (R = (CH₂)₄CH₃), 25435-63-6.

References and Notes

- (1) Support of this work by National Institutes of Health Grant GM 15431 is gratefully acknowledged. (2) G. H. Posner, *Org. React.*, **19**, 1 (1972). (3) E. S. Binkley and C. H. Heathcock, *J. Org. Chem.*, **40**, 2156 (1975), and
- references cited therein.
- T. Harayama, H. Cho, and Y. Inubishi, *Tetrahedron Lett.*, 2693 (1975).
 E. J. Corey and H. S. Sachdev, *J. Org. Chem.*, **40**, 579 (1975).
 (a) Alkylation of cyclohexenone: J.-M. Conia and A. Le Craz, *Bull. Soc. Chim.* r., 1934 (1960). (b) Aklylation of cyclohexane-1,3-dione, followed by enol there formation, reduction, and hydrolysis: M. F. Angell and T. M. Kafka, *Tetrahedron*, **25**, 6025 (1969). (c) Bromination-dehydrobromination of a 2-alkylcyclohexanone: E. W. Warnhoff, D. G. Martin, and W. S. Johnson, *Org.* Synth., 37, 8 (1957). (d) Sulfenylation of a 2-alkylcyclohexanone, followed by oxidation and elimination: B. M. Trost and T. N. Salzmann, J. Am. Chem. Soc., 95, 6840 (1973). (e) Selenation of a 2-alkylcycloxanone, followed by oxidation and elimination: H. J. Reich, J. M. Renga, and I. L. Reich, *ibid.*, 97, 5434 (1975). (f) Reduction of a 2-alkylpyridine, followed by hydrolysis and aldol condensation: S. Danishefsky and P. Cain, *J. Org. Chem.*, **40**, 3607 (1975). (g) Oxidation of a 1-alkylcyclohexene: V. F. Belyaev, *Chem. Abstr.*, **58**, 4435d (1963).
- M. D. Bachi, J. W. Epstein, Y. Herzberg-Minzly, and H. J. E. Loewenthal, J. Org. Chem., 34, 126 (1969).
 H. Christol, M. Mousseron and F. Plenat, Bull. Soc. Chim. Fr., 543 (1959).
- The thick white suspension is the ammonium salt of the o-methoxybenzoic acid. As lithium metal is added this suspension dissolves to give a pale yellow solution. As more lithium is added this color deepens to a dark orange, which deepens further to a brown before going to the blue color typical of the presence of excess lithium. On addition of 1,2-dibromethane to consume the lithium the blue color is discharged, leaving a reddish-orange solution which fades to a yellow-white suspension almost immediately on the addition of the alkylating agent.

N.N.N'.N'-Tetramethylmethanediamine. A Simple, Effective Mannich Reagent

S. Jane deSolms

Merck Sharp and Dohme Research Laboratories, West Point, Pennsylvania 19486

Received February 27, 1976

The Mannich reaction followed by β -elimination has long been used to convert a ketone into an α,β -unsaturated analogue. Under the usual reaction conditions, a methylenebisamine (I) is formed which, under acid conditions, forms the resonance-stabilized aminocarbonium ion (III) (eq 1).¹

Ahond et al.^{2,3} found that a similarly reactive intermediate formed by the treatment of trimethylamine oxide with a

methylene chloride solution of trifluoroacetic anhydride proved to be an excellent Mannich reagent. Using this principle, Taylor⁴ used N, N, N', N'-tetramethylmethanediamine and acetic anhydride to generate an α,β -unsaturated ketone without utilizing the Mannich base.

In the preparation of the recently discovered uricosuric saluretics, (1-oxo-2,2-disubstituted-5-indanyloxy)acetic acids,⁵ it was desired to introduce a methylene group under Mannich conditions α to an alkyl aryl ketone. Treatment of $ArC(=O)CH_2$ -aryl with paraformaldehyde, dimethylamine hydrochloride, and acetic acid⁶ did not afford high yields of α , β -unsaturated ketone in our hands.⁷

The desired transformation was successfully carried out by using N,N,N',N'-tetramethylmethanediamine and acetic anhydride constituting an extension of the reaction described by Taylor. We found that the mild conditions employed allowed for the isolation of the α,β -unsaturated ketones in excellent yields with no by-products. For reaction to take place at <40°C, enhanced activation of the adjacent methylene by both the ketone and aryl moieties, $ArC(=O)CH_2$ -aryl, was necessary since ketones of the type ArC(=0)CH₂-alkyl did not react under similar conditions. However, treatment of $ArC(=0)CH_2$ -alkyl compounds with N,N,N',N'-tetramethylmethanediamine and acetic anhydride at higher temperatures (90°C) did give the desired α,β -unsaturated ketones in good yields.

Experimental Section

General Procedure. Acetic anhydride (50 ml) was added dropwise to a suspension of the alkyl aryl ketone (0.1 mol) in N, N, N', N' tetramethylmethanediamine (50 ml). The reaction temperature was maintained at <40°C by ice-bath cooling. After 1 h of stirring at 25 °C, the solution was added slowly to crushed ice-water (1 l.) with stirring to precipitate analytically pure product in 80-100% yield (Table I).

Acknowledgments. The author wishes to thank Dr. E. J. Cragoe, Jr., and Mr. O. W. Woltersdorf, Jr., for their guidance and assistance throughout this work.

Registry No.-2,3-Dichloro-4-phenylacetylanisole, 59043-83-3; 2-chloro-3-methyl-4-phenylacetylanisole, 59043-84-4; 2,3-dichloro-4-phenylacetyl-α-carboxyanisole ethyl ester, 59043-85-5; 2,3-dichloro-4-[(p-bromophenyl)acetyl]anisole, 59043-86-6; 2,3-dichloro-

Registry no.	R	\mathbf{R}^{1}	X1	X²	Mp, °C	% yield	Empirical ^a formula
57296-59-0	C, H,	CH,	Cl	Cl	87-89	98	C ₁₆ H ₁₀ Cl ₂ O ₂
59043-79-7	C, H,	CH	Cl	CH,	81-85	85	C, H, ClO,
59043-80-0	C, H,	CH,CO,C,H.	Cl	Cl	60-64	78	C, H, Cl, O,
57296-97-6	4-BrC, H	CH,	Cl	Cl	110-116	97	$C_{1}H_{1}BrCl_{2}O_{2}$
59043-81-1	4-FC/H	CH	Cl	Cl	102 - 104	80	C.H.CLFO
59043-82-2	C₂H₅ ື	CH ₃	Cl	Cl	46 - 48	86 ^b	$C_{12}^{10}H_{12}^{11}Cl_{2}O_{2}^{11}$

^a Satisfactory analytical data ($\pm 0.4\%$ for C and H) for all compounds were submitted for review. ^b At <40 °C, no reaction; at 90 °C, 86% yield.

4-[(-p-fluorophenyl)acetyl]anisole, 59043-87-7; 2,3-dichloro-4-propionylanisole, 41715-70-2; N,N,N',N'-tetramethylmethanediamine, 51-80-9.

References and Notes

- J. E. Fernandez and R. Sutor, J. Org. Chem., 32, 477 (1967).
 A. Ahond, A. Cavé, C. Kan-Fan, H. Husson, J. deRostolan, and P. Potier, J. Am. Chem. Soc., 90, 5622 (1968).
- A. Ahond, A. Cavé, C. Kan-Fan, and P. Potier, Bull. Soc. Chim. Fr., 2707 (3)(1970).
- (4) E. C. Taylor and Y. Shvo, J. Org. Chem., 33, 1719 (1968).
- E. J. Cragoe, Jr., E. M. Schultz, J. D. Schneeberg, G. E. Stokker, O. W. Woltersdorf, Jr., G. M. Fanelli, and L. S. Watson, J. Med. Chem., 18, 225 (5) (1975).
- E. M. Schultz, E. J. Cragoe, Jr., J. B. Bicking, W. A. Bolhofer, and J. M. Sprague, *J. Med. Pharm. Chem.*, **5**, 660 (1962). Under the forcing conditions required for its formation, the thermally unstable (6)
- (dihydropyran) based on its ¹H NMR spectrum and by analogy with work previously described.⁸
- (8) E. J. Cragoe, Jr., and J. J. Baldwin, U.S. Patent 3 483 227 (1969).

Communications

Hydroxylation with Ozone on Silica Gel. The Synthesis of 1α , 25-Dihydroxyvitamin D₃

Summary: A convenient synthesis of 1α , 25-dihydroxyvitamin D_3 , the natural calcium regulating hormone, based on a regioselective C₂₅-hydroxylation of 1α , 3β -diacetoxy- 6β , 7α -dibromocholestane by means of ozone absorbed on silica gel, is reported.

Sir: As a further development of our studies on the functionalization of unactivated carbon atoms,¹ we report on the utilization of the recently published method of dry ozonation² for a relatively simple synthesis of the calcium regulating hormone, viz., the 1α ,25-dihydroxyvitamin D₃ (1b).³

The key step in this synthesis is the highly regioselective C₂₅-hydroxylation of a tetrasubstituted cholestane derivative, the dibromide 2a, which is an intermediate in the preparation of a physiological useful substitute of 1b, viz., the 1α -hydroxyvitamin D_3^4 (1a). We obtained this dibromide intermediate, 2a, in a five-step synthesis from cholesterol, by the following sequence: cholesterol $\rightarrow 3a \rightarrow 4a \rightarrow 5a \rightarrow 5c \rightarrow 2a.^4$

Silica gel for chromatography (Merck-Kieselgel 60, 70-220 mesh) containing 1% by weight of adsorbed 2a was saturated with ozone (generated from Welsbach ozonizer) at -78 °C and allowed to warm to room temperature. This procedure was repeated altogether five times. Elution and chromatographic separation yielded, in addition to recovered starting material 2a, the C₂₅-hydroxy derivative, 2b, mp 174–175 °C, $[\alpha]$ D -24° , as the only isolated product (11% conversion and 51% yield). The presence of OH at C_{25} in 2b was indicated by its NMR spectrum which was similar to that of the starting compound $2a^4$ except for the signals due to the methyl protons at C_{25} appearing as a singlet at δ 1.20 ppm instead of a doublet at 0.85 and by its mass spectrum $[M^+ \text{ at } m/e 660 (^{79}\text{Br})]$ and 59 of $(CH_3)_2C^+OH$]. The structure of **2b** was proved by comparison of its C_{25} acetate, $2d \; [NMR \; \delta \; 1.41, \, 1.96 \; ppm \; (CH_3 \; and$ OAc at C_{25} ; mass spectra M⁺ at m/e 702 (⁷⁹Br) and 101 of $(CH_3)_2C^+OAc$ with a compound synthesized by us from the previously described C₂₅-hydroxy epoxide 4b.^{5,6} Reduction of the epoxide with Li/NH₃ in the presence of NH₄Cl resulted in 20% $\hat{\Delta}^6$ -triol, **5b**⁷ [mp 193–196 °C; [α]D –62°; NMR (CDCl₃) $\delta 0.70 (s, 3, C_{18} H), 0.80 (s, 3, C_{19} H), 0.91 (d, 3, J = 7 Hz, C_{21}$

